注册电气工程师

设随机变量X与Y相互独立,已知X服从区间(1,5)上的均匀分布,Y服从参数λ=5的指数分布,则D(3X-5Y)等于().A、5B、9C、10D、13

题目

设随机变量X与Y相互独立,已知X服从区间(1,5)上的均匀分布,Y服从参数λ=5的指数分布,则D(3X-5Y)等于().

  • A、5
  • B、9
  • C、10
  • D、13
如果没有搜索结果,请直接 联系老师 获取答案。
如果没有搜索结果,请直接 联系老师 获取答案。
相似问题和答案

第1题:

设随机变量X与Y相互独立且都服从参数为A的指数分布,则下列随机变量中服从参数为2λ的指数分布的是().

A.X+y
B.X-Y
C.max{X,Y}
D.min{X,Y}

答案:D
解析:

第2题:

设随机变量X服从区间(-1,5)上的均匀分布,Y=3X-5,则E(Y)与D(Y)分别等于( ).

A.1,9
B.3,27
C.4,27
D.1,27

答案:D
解析:

第3题:

设随机变量X和Y相互独立,且都服从标准正态分布,则:P(X+Y≥0)=()。


参考答案:0.5

第4题:

设随机变量X服从参数为2的指数分布,证明:Y=1-在区间(0,1)上服从均匀分布.


答案:
解析:

第5题:

设随机变量X在[-1,2]上服从均匀分布,随机变量=则D(Y)=_______.


答案:
解析:

第6题:

设随机变量X和Y都服从正态分布,则().

A.X+Y一定服从正态分布
B.(X,Y)一定服从二维正态分布
C.X与Y不相关,则X,Y相互独立
D.若X与Y相互独立,则X-Y服从正态分布

答案:D
解析:
若X,Y独立且都服从正态分布,则X,Y的任意线性组合也服从正态分布,选(D).

第7题:

若随机变量X与Y相互独立,且X在区间[0,2]上服从均匀分布,Y服从参数为3的指数分布,则数学期望E(XY)等于:

A.4/3
B.1
C.2/3
D.1/3

答案:D
解析:
提示:X与Y独立时,E(XY)=E(X)E(Y),X在[a,b]上服从均匀分布时,E(X)=(a+b)/2,Y服从参数为λ的指数分布时,E(Y)=1/λ。

第8题:

设随机变量X与Y相互独立.已知X服从区间(1,5)上的均匀分布,Y服从参数λ=5的指数分布,则D(3X-5Y)等于( ).

A.5
B.9
C.10
D.13

答案:D
解析:

第9题:

设X,Y相互独立且都服从(0,2)上的均匀分布,令Z=min{X,Y},则P(0

答案:
解析:
由X,Y在(0,2)上服从均匀分布得  
因为x,Y相互独立,所以
  Fz(z)=P(Z≤z)=1-P(Z>z)=1-P(min{X,Y)}>z)=1-P(X>z,Y>z)
  =1-P(X>z)P(Y>z)=1=【1-P(X≤z)】【1-P(Y≤z)】
  =1-【1-Fx(z)】【1-FY(z)】,

第10题:

设随机变量X在区间(0,1)内服从均匀分布,在X=x(0  (Ⅰ)随机变量X和Y的联合概率密度;
  (Ⅱ)Y的概率密度;
  (Ⅲ)概率P{X+Y>1}.


答案:
解析:
【简解】本题是数四2004年考题,考查均匀分布,二维随机变量的概率密度、边缘密度和条件密度,当年的得分率仅为0.204.主要的困难在于对条件概率密度的理解.

更多相关问题