CMS专题

单选题已知圆内接四边形ABCD中,AB、CD的延长线交与点F,则F=()A 40°B 50°C 60°D 70°

题目
单选题
已知圆内接四边形ABCD中,AB、CD的延长线交与点F,则F=()
A

40°

B

50°

C

60°

D

70°

如果没有搜索结果,请直接 联系老师 获取答案。
如果没有搜索结果,请直接 联系老师 获取答案。
相似问题和答案

第1题:

在平行四边形ABCD中,∠DAB=60°,AB=15cm.已知⊙O的半径等于3cm,AB,AD分别与⊙O相切于点E,F,⊙O在平行四边形ABCD内沿AB方向滚动,与BC边相切时运动停止,试求⊙O滚过的路程.


正确答案:
解:

第2题:

设有关系模式R(A,B,C,D),F是R上成立的FD集,F={AB→C,D→A},则属性集(CD)的闭包(CD)+为______。

A.CD

B.ACD

C.BCD

D.ABCD


正确答案:B

第3题:

设有关系模式R(A,B,C,D),F是R上成立的FD集,F={AB→C,D→A},则属性集(CD)的闭包(CD)+为()

A.CD

B.ACD

C.BCD

D.ABCD


参考答案:B

第4题:

如图,四边形ABCD与四边形DEFG都是矩形,顶点F在BA的延长线上,边DG与AF交于点H,AD=4,DH=5,EF=6,求FG的长.


答案:
解析:
解:∵四边形ABCD和四边形DEFG均为矩形,
∴∠DAF=∠DAB=90°,∠G=90°,DG=EF.
∵EF=6,DH=5,∴GH=DG-DH=EF-DH=6-5=1
在Rt△ADH中,AD=4,DH=5,

第5题:

设关系模式R (U,F),其中U为属性集, F是U上的一组函数依赖,那么函数依赖的公理系统(Armstrong公理系统)中的合并规则是指为( )为F所蕴涵。

A.若A→B,B→C,则A→CB.若Y⊆X⊆U,则X→Y。C.若A→B,A→C ,则A→BCD.若A→B,C⊆B,则A→C


正确答案:C

第6题:

已知关系R={A,B,C,D,E,F},F={A→C,BC→DE,D→E,CF→B}。则(AB)F+

的闭包是()

A.ABCDEF

B.ABCDE

C.ABC

D.AB


参考答案:B

第7题:

对边相等,对角相等的凸四边形,是平行四边形吧?

方法①∠B小于90°;

左上为A,左下为B,右下为C,右上为D;

已知∠B=∠D;AB=CD;

证明:过A作AN⊥BC于N;

      过C作CM⊥AD于M;

      连接AC

∵AN⊥BC;CM⊥AD

∴∠ANB=∠DMC=90°

又∵∠B=∠D;AB=CD

∴△ANB=△DMC(AAS)

∴AN=CM;BN=DM

又∵∠ANB=∠DMC=90°,AC=AC

∴△ACD=△AMD(HL)

∴AM=DN

又∵BN=DM

∴BD=AC

∵BD=AC;AB=CD

∴凸四边形ABCD为平行四边型。

方法②∠B大于90°

左上为A,左下为B,右下为C,右上为D;

已知∠B=∠D;AB=CD;

证明:延长CD,过A作AN⊥BC于N;

      延长AB,过C作CM⊥AD于M;

      连接AC

∵AN⊥BC;CM⊥AD

∴∠ANB=∠DMC=90°

又∵∠B=∠D;AB=CD

∴△ANB=△DMC(AAS)

∴AN=CM;BN=DM

又∵∠ANB=∠DMC=90°,AC=AC

∴△ACD=△AMD(HL)

∴AM=DN

又∵BN=DM

∴BD=AC

∵BD=AC;AB=CD

∴凸四边形ABCD为平行四边型。

方法③∠B等于90°

证明:∵∠B=∠D=90°;AB=CD;AC=AC

∴△ABC=△ADC(HL)

∴AB=CB

∵BD=AC;AB=CD

∴凸四边形ABCD为平行四边型。

有错吗?若我的证明有错请明示,我知道有个反例,但它是凹四边形。


是平行四边形

第8题:

平行四边形ABCD的周长是28cm,CD-AD=2cm,则AB的长度是( )。

A.8cm

B.6cm

C.7cm

D.9cm


正确答案:A
由CD+AD=14cm,CD-AD=2cm,可得CD=8cm,所以AB=CD=8cm。

第9题:

如图。在直角梯形ABCD中,AB∥CD,∠BAD=90o,且AB=8,AD=3,CD=4,动点P,Q分别以点B和点A为起点同时出发,点P沿B→A,以每秒1个单位速度运动,终点为点A;点Q沿A→D→C→B,以每秒1.5个单位速度运动,终点为点B。设△APQ的面积为y,运动时间为x。
(1)求y关于x的函数解析式y=f(x);
(2)画出函数y=f(x)的图象。


答案:
解析:

(2)函数图象如图所示:

第10题:

如下图,平行四边形ABCD的对角线相交于点O,直线EF经过点O,分别与AB,CD的延长线交于点E,F.求证:四边形AECF是平行四边形.



答案:
解析:
证明:如右图所示,∵四边形ABCD为平行四边形,∴BO=DO,



又∵AB∥CD,∴∠FDO=∠EB0

更多相关问题