理学

问答题简述块体纳米材料的制备方法原理

题目
问答题
简述块体纳米材料的制备方法原理
如果没有搜索结果,请直接 联系老师 获取答案。
如果没有搜索结果,请直接 联系老师 获取答案。
相似问题和答案

第1题:

制备纳米粉体只要有哪些方法?各方法的主要原理是什么?各有何优缺点?


正确答案: 气相水解法,该工艺产品纯度高、粒径小、分散性好,但多对过程控制和设备材质要求较高;硫酸氧钛溶液中和法,优点是来源广泛,产品成本较低,但工艺路线较长,自动化程度低,各个工艺的参数需要严格控制;
胶体化学法;水热合成法;沉淀水解法,优点是成本较低,工艺简单,质量稳定,但是适应面较窄;
溶胶-凝胶法,设备比较简单制备出来的纳米粒子均匀,粒度比较小,但是工艺参数要求严格且不易控制,制备过程中还会发出毒性有机物,污染环境;固相法,该方法工艺简单、成本低、产量大,但产品粒度范围较宽,很难制的100纳米以下的粉体,长时间机械能作用会使物料发生一定程度的机械力化学反应。

第2题:

简述纳米材料产生团聚的主要原因、表面改性原理及其方法。


正确答案: 粉体产生团聚的原因:
(1)凝聚体:是原级粒子间以双面相结合的,或晶面成长在一起的,结构比较紧密的、大的粒子团。
(2)附聚体:是原级粒子的边和角相连接,结合而成的,结构比较松散的,大的粒子团。
(3)软团聚体:由范德华力、静电引力等较弱的力引起的微粒团,它在外力作用下易于拆开。
(4)硬团聚体:硬团聚一般是指颗粒之间通过化学键力或氢键作用力等强作用力连接形成的团聚体。一般外力作用难于拆开。形成原因包括晶桥理论、毛细管理论、氢键理论、化学键理论。
纳米粉体表面改性基本原理:在颗粒表面引入一层包覆层,形成由“核层”和“壳层”组成的复合粉体。壳层既可以是无机物质也可以是有机物质。
表面改性方法:
①物理:蚀刻;超声波;高能射线照射;机械处理。
②化学:水溶液沉淀干燥;表面活性处理;表面化学处理;聚合物涂覆;化学气相沉积。

第3题:

何谓纳米材料?纳米材料通常可分为哪些类型?目前有哪些常用的制备方法?纳米材料有何特性?有哪些应用前景?


参考答案:纳米材料是指显微结构中的物相具有纳米级尺寸的材料;可分为:纳米粒子;纳米固体;纳米组装系统;制备方法主要有:沉淀法,浸渍法,水热法,微波辐射法,超声波辐射合成法等;特性:小尺寸效应,表面效应,量子尺寸效应,宏观隧道效应等;在光学材料,催化材料,贮氢材料,磁性材料等领域有广泛的应用。

第4题:

简述块体纳米材料存在的问题及解决方案


正确答案: 存在问题
(1)热稳定性差块体纳米材料中大量的晶界处于热力学亚稳态 ,在适当的外界条件下将向稳定的亚稳态或稳定态转化 ,一般表现为三种形式:晶粒长大、固溶脱脂或相变。块体纳米材料一旦发生晶粒长大 ,即转变为普通粗晶材料 ,失去其优异性能 ,甚至在常温下 ,纳米材料的热稳定性也较差。
(2)致密性差 
解决方案 
(1)解决热稳定性差问题 
(a)加入第二相
加入的第二相物质 ,在纳米材料的晶界中起到隔离晶粒边界的作用 ,抑制纳米晶粒的可动性 ,提高块状纳米材料的热稳定性。 
(b)强烈塑性加工 
强烈塑性流动还使纳米晶粒增强相均匀弥散于基体材料中 ,抑制晶粒长大 ,提高其热稳定性;同时也消除了组织疏松现象 ,使材料致密 ,各组元分布平缓、均匀从而提高块体纳米材料的力学性能和热稳定性。 
(2)解决致密性差问题
(a)烧结 
控制纳米晶体在烧结过程中的生长是纳米烧结研究追求的目标。 目前主要的方法有:对烧结过程中施加外力,即施压;在纳米材料中加入第二相物质 ,利用快速烧结抑制纳米晶粒生长。 
(b)挤压 
挤压是对放在容器(挤压筒) 内的坯料施加力,使之从特定的模孔中流出,获得所需断面形状尺寸的一种塑性加工方法。对于用粉末冶金法制而成的块体纳米材料,利用高温挤压变形时,强三压应力和强剪切变形作用,可以破坏块体表面的化膜,改善块体颗粒之间的接触状态 ,压合内部的洞和孔隙 ,从而提高块体纳米材料的致密度及力性能。

第5题:

简述块体纳米材料的制备方法原理


正确答案: 外压力合成法:
(1)惰性气体凝聚原位加压成形法
(2)高能机械研磨法  
(3)电解沉积法   
相变界面成形法:
非晶晶化法  
大塑性变形法(粉末冶金法,高温、高压法) 
电解沉积法原理:电解沉积法是指在溶液中带正电的金属离子,吸附到带负电的纳米颗粒表面,然后在电动力的作用下移至阴极,金属离子还原成原子,并与所俘获的纳米颗粒一起占据阴极金属或合金表面的位置,而形成涂层,逐渐形成薄膜纳米材料。 
非晶晶化法原理:非晶晶化法是通过控制非晶态固体的晶化动力,来获得块体纳米材料的方法,它包括非晶态固体的获得和晶化两个过程。 
大塑性变形法原理:它是材料在准静态压力作用下自身发生严重塑性变形,从而将材料的晶粒尺寸细化到亚微米级或纳米数量级。 
粉末冶金法原理:粉末冶金法是把纳米粉压实成实体,然后放到热压炉中烧结。 
高温、高压法原理:高温、高压法是将真空电弧炉熔炼的样品置入高压腔体内,加压至数GPa后升温,通过高压抑制原子的长程扩散及晶体的生长速率,从而实现晶粒的纳米化 ,然后再从高温下固相淬火以保持高温、高压组织。

第6题:

简述纳米材料的构建方法。


正确答案: 两种,一种是自上而下的方法(Top-Down),另一种是自下而上的方法(Bottom-Up)。
自上而下,通过微加工等技术手段,不断在尺寸上将功能材料器件微型化,比如粉碎法、激光加工、光影印、光刻;自下而上,以原子分子为基本单元进行设计和组装,构筑具有特定功能、性能的材料器件,比如化学气相沉积、物理气相沉积、模板法、溶胶凝胶法、自组装法、电沉积、化学还原法、水热法或溶剂热法等。

第7题:

简述纳米材料的制备方法基本原理。(蒸发-冷凝法、水热合成法、溶剂热合成法、溶胶-凝胶法、微乳液法、模板合成法、自组装法及其特点、VLS机制,VS机制等)


正确答案: 蒸发-冷凝法原理:在高真空的条件下,金属试样经蒸发后冷凝。
水热合成法原理:在特制的密闭反应容器里,采用水溶液作为反应介质,对反应容器加热,创造一个高温(100~350℃)、高压(1~500MPa)的反应环境,使通常难溶或不溶的物质溶解并重结晶。
溶胶-凝胶合成原理:将金属醇盐或无机盐经水解直接形成溶胶或经解凝形成溶胶,然后使溶胶聚合凝胶化,再将凝胶干燥、焙烧去除有机成分,最后得到无机材料。
微乳液法基本原理:两种互不相溶的溶剂在表面活性剂的作用下形成微乳液,在“微泡”中经成核、聚结、团聚、热处理后得到粉体。
模板合成法原理:利用基质材料结构中的空隙或外表面作为模板进行合成。结构基质为多孔玻璃、分子筛、大孔离子交换树脂等。
自组装法原理:基本结构单元在基于非共价键的相互作用下自发的组织或聚集为一稳定、具有一定规则几何外观的结构。
特点:
①有序性:结构比组成部分有序性高
②相互作用力弱:氢键、范德华力、静电作用等
③组成结构复杂:包含纳米及细观结构
VLS生长机制:必须有催化剂的存在;在适宜的温度下,催化剂能与生长材料的组元互熔形成液态的共熔物;生长材料的组元不断地从气相中获得;当液态中溶质组元达到过饱和后,晶须将沿着固-液界面的择优方向析出。特点:催化剂的尺寸决定纳米线材料的最终直径;反应时间影响纳米线的长径比。
VS生长机制:通过热蒸发、化学还原或气相反应等方法产生气相;气相被传输到低温区并沉积在基底上;以界面上微观缺陷(位错、孪晶等)为形核中心生长出一维材料。

第8题:

超重力合成碳酸钙的基本原理是什么?用超重力机制备纳米材料有什么特点? 


正确答案: 原理:首先是石灰石的煅烧,得到纯净的氧化钙,氧化钙经水消化得到石灰乳,石灰乳与二氧化碳在超重力反应器中完成碳酸化反应并形成纳米级碳酸钙晶体。
特点:克服了间歇鼓泡及搅拌釜等传统碳化法中传质速率低、粒度分布宽、粒径较大、产品质量不均匀等不足。

第9题:

简述纳米材料制备过程中的主要问题和解决方法。


正确答案: (1)纳米粒子的分散。纳米粒子粒径小,表面能高,极易形成团聚的大颗粒
解决方法:
超声分散:利用超声波空化产生的高温、高压或强冲击波和微射 流作用,可大幅度地弱化纳米粒子的表面作用和静电作用,有效地防止纳米粒子团聚而使之充分分散。 机械搅拌分散 化学改性分散。通过化学反应赋予纳米粒子表面一定的有机化合物薄膜,可以提高纳米粒子在有机基质中的分散性。 分散剂分散
(2)纳米粒子的污染:目前没有十分有效的解决方法。

第10题:

块体纳米材料的制备技术有哪些?


正确答案: (1)惰性气体凝聚原位加压成型法:
合成过程分为两步:气体冷凝获得纳米粉末,纳米粉末被加压致密。整个过程是在超高真空室内进行。
(2)机械合金研磨结合加压成块 在干燥的球形装料机内,在高真空氩气的保护下,通过机械研磨过程中调整运行的硬质钢球与研磨体之间相互碰撞对粉末粒子反复进行熔结、断裂、再熔结的过程 使晶粒不断细化,达到纳米尺寸,然后,纳米粉再采用热挤压、热静压等技术制得块状纳米材料。
(3)非晶晶化法
需要两个独立的过程,非晶态合金的制备和退火处理过程。
(4)大塑性变形法,喷雾沉积法、离子注入法等。