教师资格

设M为3×3实数矩阵,a为M的实特征值λ的特征向量,则下列叙述正确的是( )。 A、当λ≠0时,Ma垂直于a B、当λ>0时,Ma与a方向相反 C、当λ<0时,Ma与a方向相反 D、向量Ma与a共线

题目
设M为3×3实数矩阵,a为M的实特征值λ的特征向量,则下列叙述正确的是( )。

A、当λ≠0时,Ma垂直于a
B、当λ>0时,Ma与a方向相反
C、当λ<0时,Ma与a方向相反
D、向量Ma与a共线
如果没有搜索结果,请直接 联系老师 获取答案。
如果没有搜索结果,请直接 联系老师 获取答案。
相似问题和答案

第1题:

已知二阶实对称矩阵A的特征值是1,A的对应于特征值1的特征向量为(1,-1)T,若|A|=-1,则A的另一个特征值及其对应的特征向量是(  )。


答案:B
解析:
根据矩阵行列式与特征值的关系:|A|=λ1λ2,故另一个特征值为-1,其对应的特征向量应与已知特征向量正交,即两向量点乘等于零,因此(1,1)T满足要求。

第2题:

若A是实对称矩阵,则A的特征值全为实数


答案:对
解析:

第3题:

设三阶实对称矩阵的特征值为3,3,0,则A的秩r(A)=()

A、2

B、3

C、4

D、5


参考答案:A

第4题:

已知三维列向量αβ满足αTβ=3,设3阶矩阵A=βαT,则:

A. β是A的属于特征值0的特征向量
B. α是A的属于特征值0的特征向量
C. β是A的属于特征值3的特征向量
D. α是A的属于特征值3的特征向量

答案:C
解析:
通过矩阵的特征值、特征向量的定义判定。只要满足式子Ax=λx,向量x即为矩阵A对应特征值λ的特征向量。
再利用题目给出的条件:
αTβ=3 ①
A=βαT ②
将等式②两边均乘β,得辱A*β=βαT*β,变形Aβ=β(αTβ),代入式①得Aβ=β*3,故Aβ=3*β成立。

第5题:

设A为n阶实对称矩阵,下列结论不正确的是().

A.矩阵A与单位矩阵E合同
B.矩阵A的特征值都是实数
C.存在可逆矩阵P,使P^-1AP为对角阵
D.存在正交阵Q,使Q^TAQ为对角阵

答案:A
解析:
根据实对称矩阵的性质,显然(B)、(C)、(D)都是正确的,但实对称矩阵不一定是正定矩阵,所以A不一定与单位矩阵合同,选(A).

第6题:

设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().

A.矩阵A不可逆
B.矩阵A的迹为零
C.特征值-1,1对应的特征向量正交
D.方程组AX=0的基础解系含有一个线性无关的解向量

答案:C
解析:
由λ1=-1,λ2=0,λ3=1得|A|=0,则r(A)小于3,即A不可逆,(A)正确;又λ1+λ2+λ3=tr(A)=0,所以(B)正确;因为A的三个特征值都为单值,所以A的非零特征值的个数与矩阵A的秩相等,即r(A)=2,从而AX=0的基础解系仅含有一个线性无关的解向量,(D)是正确的;(C)不对,因为只有实对称矩阵的不同特征值对应的特征向量正交,一般矩阵不一定有此性质,所以选(C).

第7题:

设n阶矩阵A与对角矩阵相似,则().

A.A的n个特征值都是单值
B.A是可逆矩阵
C.A存在n个线性无关的特征向量
D.A一定为n阶实对称矩阵

答案:C
解析:
矩阵A与对角阵相似的充分必要条件是其有n个线性无关的特征向量,A有n个单特征值只是其可对角化的充分而非必要条件,同样A是实对称阵也是其可对角化的充分而非必要条件,A可逆既非其可对角化的充分条件,也非其可对角化的必要条件,选(C).

第8题:

设A为n阶实对称矩阵,则().

A.A的n个特征向量两两正交

B.A的n个特征向量组成单位正交向量组

C.A的k重特征值λ0,有r(λ0E-A)=n-k

D.A的k重特征值λ。,有r(λ0E-A)=k


参考答案:

第9题:

设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:
A. Pa B. P-1

A C. PTa D.(P-1)Ta

答案:B
解析:

第10题:

设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:(A) Pα (B) P-1α (C) PTa (D) P(-1)Ta


答案:A
解析:
解:选A。
考察了实对称矩阵的特点,将选项分别代入检验可得到答案。

更多相关问题