百科知识竞赛

简述纳米材料的构建方法。

题目

简述纳米材料的构建方法。

如果没有搜索结果,请直接 联系老师 获取答案。
如果没有搜索结果,请直接 联系老师 获取答案。
相似问题和答案

第1题:

简述纳米材料的四大效应。


正确答案: 小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效应。
①小尺寸效应,当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应。
②表面效应
颗粒比表面积:颗粒表面积与体积之比,S/V=6/D随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应。
③量子尺寸效应,指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象(粒子尺寸越小,能级间距越大)。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同的现象。
④宏观量子隧道效应
即当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。近年来,人们发现一些宏观量,例如微颗粒的磁化强度,量子相干器件中的磁通量等亦有隧道效应,称为宏观的量子隧道效应。

第2题:

简述纳米科技、纳米材料的基本概念。


正确答案: 纳米科技:在纳米尺度(l~100纳米)上研究物质(包括原子、分子的操纵)的特性和相互作用,以及利用这些特性的多学科交叉的科学和技术。
纳米材料:三维空间中至少有一维尺寸小于100nm的材料或由它们作为基本单元构成的具有特殊功能的材料。

第3题:

何谓纳米材料?纳米材料通常可分为哪些类型?目前有哪些常用的制备方法?纳米材料有何特性?有哪些应用前景?


参考答案:纳米材料是指显微结构中的物相具有纳米级尺寸的材料;可分为:纳米粒子;纳米固体;纳米组装系统;制备方法主要有:沉淀法,浸渍法,水热法,微波辐射法,超声波辐射合成法等;特性:小尺寸效应,表面效应,量子尺寸效应,宏观隧道效应等;在光学材料,催化材料,贮氢材料,磁性材料等领域有广泛的应用。

第4题:

简述在目前材料技术中获得纳米晶材料十分困难的原因。


正确答案: 制备纳米晶材料关键是在保持块体材料呈现纳米晶结构,而又能获得全致密化。
1)从烧结热力学角度,纳米粉体具有极大的表面能,既为烧结过程中的全致密化提供驱动力,也为晶粒长大提供驱动力;
2)从烧结动力学角度,烧结动力学方程(X/a)m=F(T).t/am-n,由于纳米粉末颗粒的a值很小,达到相同的x/a值所需时间很短,烧结温度降低。纳米粉末具有本征的偏离平衡态的亚稳结构,热激活过程导致纳米结构不稳定。
所以,获得纳米晶材料十分困难

第5题:

简述块体纳米材料的制备方法原理


正确答案: 外压力合成法:
(1)惰性气体凝聚原位加压成形法
(2)高能机械研磨法  
(3)电解沉积法   
相变界面成形法:
非晶晶化法  
大塑性变形法(粉末冶金法,高温、高压法) 
电解沉积法原理:电解沉积法是指在溶液中带正电的金属离子,吸附到带负电的纳米颗粒表面,然后在电动力的作用下移至阴极,金属离子还原成原子,并与所俘获的纳米颗粒一起占据阴极金属或合金表面的位置,而形成涂层,逐渐形成薄膜纳米材料。 
非晶晶化法原理:非晶晶化法是通过控制非晶态固体的晶化动力,来获得块体纳米材料的方法,它包括非晶态固体的获得和晶化两个过程。 
大塑性变形法原理:它是材料在准静态压力作用下自身发生严重塑性变形,从而将材料的晶粒尺寸细化到亚微米级或纳米数量级。 
粉末冶金法原理:粉末冶金法是把纳米粉压实成实体,然后放到热压炉中烧结。 
高温、高压法原理:高温、高压法是将真空电弧炉熔炼的样品置入高压腔体内,加压至数GPa后升温,通过高压抑制原子的长程扩散及晶体的生长速率,从而实现晶粒的纳米化 ,然后再从高温下固相淬火以保持高温、高压组织。

第6题:

简述纳米材料的其他新奇性质。


正确答案: ①光学性质:所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑。
②热学性质:固态物质在其形态为大尺寸时,其熔点是固定的,超细微化后却发现其熔点将显著降低,当颗粒小于10纳米量级时尤为显著。
③磁学性质:小尺寸的超微颗粒磁性与大块材料显著的不同,当颗粒尺寸减小到0.02微米以下时,其矫顽力可增加1千倍,若进一步减小其尺寸,大约小于0.006微米时,其矫顽力反而降低到零,呈现出超顺磁性。
④力学性质:陶瓷材料在通常情况下呈脆性,然而由纳米超微颗粒压制成的纳米陶瓷材料却具有良好的韧性。

第7题:

简述纳米材料产生团聚的主要原因、表面改性原理及其方法。


正确答案: 粉体产生团聚的原因:
(1)凝聚体:是原级粒子间以双面相结合的,或晶面成长在一起的,结构比较紧密的、大的粒子团。
(2)附聚体:是原级粒子的边和角相连接,结合而成的,结构比较松散的,大的粒子团。
(3)软团聚体:由范德华力、静电引力等较弱的力引起的微粒团,它在外力作用下易于拆开。
(4)硬团聚体:硬团聚一般是指颗粒之间通过化学键力或氢键作用力等强作用力连接形成的团聚体。一般外力作用难于拆开。形成原因包括晶桥理论、毛细管理论、氢键理论、化学键理论。
纳米粉体表面改性基本原理:在颗粒表面引入一层包覆层,形成由“核层”和“壳层”组成的复合粉体。壳层既可以是无机物质也可以是有机物质。
表面改性方法:
①物理:蚀刻;超声波;高能射线照射;机械处理。
②化学:水溶液沉淀干燥;表面活性处理;表面化学处理;聚合物涂覆;化学气相沉积。

第8题:

简述碳纳米材料(C60、碳纳米管)的结构、合成方法、性能。


正确答案: 一、C60:
结构:C60分子中每个碳原子与周围3个碳原子形成2个单键和1个双键。
合成方法:电弧放电法、苯火焰燃烧法、高频加热蒸发石墨法
性能:物理性质:
①黑色粉末,密度1.65g/cm3±0.05g/cm3,熔点>700℃;
②易溶于CS2、甲苯等,在脂肪烃中溶解度随溶剂碳原子数的增加而增大;
③能在不裂解情况下升华;
④抗冲击能力强;
⑤具有非线性光学性能,室温下是分子晶体,适当的金属掺杂后的C60表现出良好的导电性和超导性。化学性质:芳香性,倾向于得到电子,易于与亲核试剂反应。
二、碳纳米管:
①单壁碳纳米管:由一层石墨烯片组成。典型的直径和长度分别为0.75~3nm和1~50μm。
②多壁碳纳米管:含有多层石墨烯片。形状象个同轴电缆。其层数从2~50不等,层间距为0.34±0.01nm,与石墨层间距(0.34nm)相当。典型直径和长度分别为2~30nm和0.1~50μm。

第9题:

简述纳米材料制备过程中的主要问题和解决方法。


正确答案: (1)纳米粒子的分散。纳米粒子粒径小,表面能高,极易形成团聚的大颗粒
解决方法:
超声分散:利用超声波空化产生的高温、高压或强冲击波和微射 流作用,可大幅度地弱化纳米粒子的表面作用和静电作用,有效地防止纳米粒子团聚而使之充分分散。 机械搅拌分散 化学改性分散。通过化学反应赋予纳米粒子表面一定的有机化合物薄膜,可以提高纳米粒子在有机基质中的分散性。 分散剂分散
(2)纳米粒子的污染:目前没有十分有效的解决方法。

第10题:

介绍几种纳米材料的制备方法?


正确答案: 气相反应法可分为:气相分解法、气相合成法及气-固反应法等。
液相反应法可分为:沉淀法、水热、溶剂热法、溶胶-凝胶法、反相胶束法等。
溶胶凝胶技术是指金属有机或无机化合物经过溶液、溶胶、凝胶而固化,在经热处理而成氧化物或其他化合物固体的方法。步骤:溶胶的制备。溶胶凝胶转化。凝胶干燥。
纳米粒子的制备方法很多,可分为物理方法和化学方法。
真空冷凝法
用真空蒸发、加热、高频感应等方法使原料气化或形成等粒子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。
物理粉碎法
通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。
机械球磨法
采用球磨方法,控制适当的条件得到纯元素、合金或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。
化学方法
气相沉积法
利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。
沉淀法
把沉淀剂加入到盐溶液中反应后,将沉淀热处理得到纳米材料。其特点简单易行,但纯度低,颗粒半径大,适合制备氧化物。
水热合成法
高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、粒度易控制。
溶胶凝胶法
金属化合物经溶液、溶胶、凝胶而固化,再经低温热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和Ⅱ~Ⅵ族化合物的制备。
微乳液法
两种互不相溶的溶剂在表面活性剂的作用下形成乳液,在微泡中经成核、聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和界面性好,Ⅱ~Ⅵ族半导体纳米粒子多用此法制备。