理学

单选题函数f(x)在x0附近有定义(在x0可以没有意义)若有一个常数C使得当x趋近于x0但不等于x0时有|f(x)-c|可以任意小,称C是当x趋近于x0时f(x)的什么?()A 微分值B 最大值C 极限D 最小值

题目
单选题
函数f(x)在x0附近有定义(在x0可以没有意义)若有一个常数C使得当x趋近于x0但不等于x0时有|f(x)-c|可以任意小,称C是当x趋近于x0时f(x)的什么?()
A

微分值

B

最大值

C

极限

D

最小值

如果没有搜索结果,请直接 联系老师 获取答案。
如果没有搜索结果,请直接 联系老师 获取答案。
相似问题和答案

第1题:

若函数f(x)在x0处连续,则f(x)在x0处极限存在。()

此题为判断题(对,错)。


参考答案:正确

第2题:

函数f(x)二阶可导,且f’(x0)=0,则点(x0,f(x0))为曲线y=f(x)的拐点。()

此题为判断题(对,错)。


参考答案:错误

第3题:

以下结论正确的是()。

A、若x0为函数y=f(x)的驻点,则x0必为函数y=f(x)的极值点.

B、函数y=f(x)导数不存在的点,一定不是函数y=f(x)的极值点.

C、若函数y=f(x)在x0处取得极值,且f′(x)存在,则必有f′(x)=0.

D、若函数y=f(x)在x0处连续,则y=f′(x0)一定存在.


参考答案:C

第4题:

已知f(x)在(-∞,+∞)上是偶函数,若f‘(-x0)=-k≠0,则f‘(x0)等于:
A.-K
B.K
C. -1/K
D.1/K


答案:B
解析:
提示:利用结论“偶函数的导函数为奇函数”计算。
f(-x) =f(x),求导-f'(-x)=f'(x),即f'(-x)=-f(x)。将x=x0代入,得f’(-x0) =-f‘(x0),解出f‘(x0)=K。

第5题:

函数y=f(x)在点x=x0处取得极小值,则必有:

A.f′(x0)=0
B.f′′(x0)>0
C. f′(x0)=0 且 f(xo)>0
D.f′(x0)=0 或导数不存在

答案:D
解析:
已知y=f(x)在x=x0处取得极小值,但在题中f(x)是否具有一阶、二阶导数,均未说明,从而答案A、B、C就不一定成立。答案D包含了在x=x0可导或不可导两种情况,如 :y= x 在x=0处导数不存在,但函数y= x 在x=0取得极小值。

第6题:

曲线y=f(x)在点(x0,f(x0))有拐点,且f''(x0)存在,则f''(x0)=1。()

此题为判断题(对,错)。


参考答案:错

第7题:

设f(x)在(-∞,+∞)上是偶函数,若f'(-x0)=-K≠0,则f(x0)等于:


答案:B
解析:
提示:利用结论“偶函数的导函数为奇函数”计算。
f(-x)=f(x),求导-f'(-x)=f'(x),即f'(-x)=-f'(x)。将x=x0代入,得f'(-x0)=-f'(x0),解出f'(x0)=K。

第8题:

设函数y=f(x)在点x0处可导,且f′(x)0,曲线y=f(x)则在点(x0,f(x0))处的切线的倾斜角为()。

A、0

B、π/2

C、锐角

D、钝角


参考答案:C

第9题:

函数y=f(x) 在点x=x0处取得极小值,则必有:
A. f'(x0)=0
B.f''(x0)>0
C. f'(x0)=0且f''(x0)>0
D.f'(x0)=0或导数不存在


答案:D
解析:
提示:已知y=f(x)在x=x0处取得极小值,但在题中f(x)是否具有一阶、二阶导数,均未说明,从而答案A、B、C就不一定成立。答案D包含了在x=x0可导或不可导两种情况,如y= x 在x=0处导数不存在,但函数y= x 在x=0取得极小值。

第10题:

若函数f (x)在点x0间断,g(x)在点x0连续,则f (x)g(x)在点x0:
(A)间断 (B)连续 (C)第一类间断(D)可能间断可能连续


答案:D
解析:
解:选D。
这道题可以用举例子的方法来判断。
f (x)g(x)=0在点处间断。

更多相关问题