专业科目

单选题若f(x)是在(-l,l)(l>1)内的不恒为0的可导奇函数,则f′(x)(  )。A 必为(-l,l)内的奇函数B 必为(-l,l)内的偶函数C 必为(-l,l)内的非奇非偶函数D 可能是奇函数也可能是偶函数

题目
单选题
若f(x)是在(-l,l)(l>1)内的不恒为0的可导奇函数,则f′(x)(  )。
A

必为(-ll)内的奇函数

B

必为(-ll)内的偶函数

C

必为(-ll)内的非奇非偶函数

D

可能是奇函数也可能是偶函数

如果没有搜索结果,请直接 联系老师 获取答案。
如果没有搜索结果,请直接 联系老师 获取答案。
相似问题和答案

第1题:

(3)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是

(A)若f(x) 是偶函数,则f(-x)是偶函数

(B)若f(x)不是奇函数,则f(-x)不是奇函数

(C)若f(-x)是奇函数,则f(x)是奇函数

(D)若f(-x)不是奇函数,则f(x)不是奇函数


正确答案:B

第2题:

设f(x)在(-∞,+∞)二阶可导,f'(x0)=0。问f(x)还要满足以下哪个条件,则f(x0)必是f(x)的最大值?

A.x=x0是f(x)的唯一驻点
B.x=x0是f(x)的极大值点
C.f"(x)在(-∞,+∞)恒为负值
D.f"(x0)≠0

答案:C
解析:
提示:f"(x)在(-∞,+∞)恒为负值,得出函数f(x)图形在(-∞,+∞)是向上凸,又知f'(x0)=0。故当x0时,f'(x)0)取得极大值。且f"(x)0)是f(x)的最大值。

第3题:

若f(x)在处可导,则∣f(x)∣在x=x0处()

A、可导

B、不可导

C、连续但未必可导

D、不连续


参考答案:C

第4题:

设f(x)是周期为4的可导奇函数,且f'(x)=2(x-1),x∈[0,2],则f(7)=________.


答案:1、1.
解析:
由f'(x)=2(x-1),x∈[0,2]知,f(x)=(x-1)^2+C.又f(x)为奇函数,则f(0)=0,C=-1.f(x)=(x-1)^2-1.由于f(x)以4为周期,则f(7)=f[8+(-1)]=f(-1)=-f(1)=1.

第5题:


A.F(x)在x=0点不连续
B.F(x)在(-∞,+∞)内连续,在x=0点不可导
C.F(x)在(-∞,+∞)内可导,且满足F′(x)=f(x)
D.F(x)在(-∞,+∞)内可导,但不一定满足F′(x)=f(x)

答案:B
解析:

第6题:

设f(x)是不恒为零的奇函数,且f′(0)存在,则g(x)=().



A.在x=0处无极限
B.x=0为其可去间断点
C.x=0为其跳跃间断点
D.x=0为其第二类间断点

答案:B
解析:

第7题:

若f(x)是在(-∞,+∞)内可导的以l为周期的周期函数,则f′(ax+b)(a≠0,a、b为常数)的周期为( )

A.l
B.l-b
C.l/a
D.l/|a|

答案:D
解析:

第8题:

若f(x)为(-∞,+∞)上的任意函数,则F(x)=f(x)-f(-x)是()

A、偶函数

B、奇函数

C、非奇非偶函数

D、F(x)≡0


参考答案:B

第9题:

已知曲线,其中函数f(t)具有连续导数,且f(0)=0,f'(t)>0(0).若曲线L的切线与x轴的交点到切点的距离恒为1,求函数f(t)的表达式,并求以曲线L及x轴和y轴为边界的区域的面积.


答案:
解析:

第10题:

(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f'(ξ)(b-a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则存在,且.


答案:
解析:

更多相关问题