第1题:
第2题:
第3题:
设X1,X2,…,X16是来自总体X~N(4,б2)的简单随机样本,б2已知,令,则统计量服从的概率密度函数为()
第4题:
第5题:
第6题:
第7题:
第8题:
设(X1,X2,…,Xn)是来自正态总体N(μ,σ2)的简单随机样本,其中参数μ,σ2未知,则下列各项中,不是统计量的有( )。
第9题:
第10题:
设总体X的分布律为P(X=i)=(i=1,2,…,θ,X1,X2,…,Xn为来自总体的简单随机样本,则θ的矩估计量为_______(其中θ为正整数).
设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为λ=3的泊松分布,记Y=X1-2X2+3X3。则DY=()。
设总体X的概率密度为其中θ是未知参数,X1,X2,…,Xn为来自总体X的简单随机样本.若是θ的无偏估计,则c=______.
设X1,X2,…,Xn是来自总体X的简单随机样本,已知E(X^k)=ak(k=1,2,3,4).证明:当n充分大时,随机变量近似服从正态分布,并指出其分布参数.
设X1,X2,…,X9是来自正态总体X的简单随机样本,…证明统计量Z服从自由度为2的t分布.
单选题设(X1,X2,…,X)是抽自正态总体N(0,1)的一个容量为n的样本,记,则下列结论中正确的是()。A 服从正态分布N(0,1)B n服从正态分布N(0,1)C 服从自由度为n的x2分布D 服从自由度为(n-1)的t分布
设总体X,Y相互独立且都服从N(μ,σ^2)分布,(X1,X2,…,Xn)与(Y1,Y1,…,yn)分别为来自总体X,Y的简单随机样本,证明:为参数σ^2的无偏估计量,
若总体X~N(0,32),X1,X2,…,x9为来自总体样本容量为9的简单随机样本,则服从_______分布,其自由度为_______.
设x为总体,E(X)=μ,D(x)=σ^2,X1,X2,…,xn为来自总体的简单随机样本,S^2= ,则E(S^2)=_______.
设总体X的分布律为P(X=k)P(k=1,2,…),其中p是未知参数,X1,X2,…,Kn为来自总体的简单随机样本,求参数p的矩估计量和极大似然估计量.