研究生入学

设总体X的密度函数为f(x)=,θ>0为未知参数,a>0为已知参数,求θ的极大似然估计量.

题目
设总体X的密度函数为f(x)=,θ>0为未知参数,a>0为已知参数,求θ的极大似然估计量.

如果没有搜索结果,请直接 联系老师 获取答案。
如果没有搜索结果,请直接 联系老师 获取答案。
相似问题和答案

第1题:

设总体X的概率密度为
未知参数,X1,X2, ...Xn是来自总体X的样本,则θ的矩估计量是:


答案:B
解析:

第2题:

设总体X的概率密度为f(x)=其中θ>-1是未知参数,X1,X2,...Xn是来自总体X的样本,则θ的矩估计量是:


答案:B
解析:
X的数学期望

第3题:

已知总体X服从参数为λ的指数分布,设X1,X2,…,Xn是子样观察值,求λ的极大似然估计。


参考答案:

第4题:

设总体X的密度函数为f(x)=,X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量.


答案:
解析:

第5题:

设总体X的分布函数为
  
  其中未知参数β>1,X1,X2,…,Xn为来自总体X的简单随机样本,求:
  (Ⅰ)β的矩估计量;(Ⅱ)β的最大似然估计量.


答案:
解析:

第6题:

设总体X的概率密度为而x1,x2,...,xn 是来自总体的样本值,则未知参数θ的最大似然估计值是:


答案:C
解析:

第7题:

设某元件的使用寿命X的概率密度为f(x;θ)=,其中θ>0为未知参数,又设(x1,x2,…,xn)是样本(X1,X2,…,Xn)的观察值,求参数θ的最大似然估计值.


答案:
解析:

第8题:

设总体X服从参数为λ的泊松分布,其中λ未知.X1,…,Xn是取自总体X的样本,则λ的最大似然估计是( ).

A.
B.
C.S
D.

答案:A
解析:

第9题:

设总体X的分布律为P(X=k)P(k=1,2,…),其中p是未知参数,X1,X2,…,Kn为来自总体的简单随机样本,求参数p的矩估计量和极大似然估计量.


答案:
解析:

第10题:

设总体X的密度函数为f(x)=,(X1,X2,…,Xn)为来自总体X的简单随机样本.(1)求θ的矩估计量θ;(2)求D(θ).


答案:
解析:

更多相关问题