食品科学技术

简述常用目的基因制备的方法及其原理?

题目

简述常用目的基因制备的方法及其原理?

如果没有搜索结果,请直接 联系老师 获取答案。
如果没有搜索结果,请直接 联系老师 获取答案。
相似问题和答案

第1题:

何谓基因?简述基因测序的基本原理及其在基因诊断中的应用价值?


正确答案:(1)基因是指能够为生物大分子(主要是蛋白质,还有tRNA、rRNA等核酸)编码的DNA片段。基因不仅可以通过复制把遗传信息传递给下一代,还可以使遗传信息得到表达。不同人种之间头发、肤色、眼睛、鼻子等有所不同,是基因差异所致。从这个意义上讲,基因就是能够表达一定基因产物的DNA序列。
(2)DNA的序列分析即核酸一级结构的测定,是现代分子生物学中一项重要技术,也是基因诊断的第一手资料。传统的测序方法多采用放射性核素标记,手工进行DNA复制或裂解反应、凝胶电泳分离DNA片段,放射自显影以及人工判断核苷酸序列等程序来测定DNA序列。这无疑是费时的、准确性较差的方法。近年来发展起来的自动测序使DNA序列分析工作标准化、规范化、工厂化,极大地促进了DNA结构的研究。新型DNA自动测序仪,采用荧光染料标记技术及毛细管电泳方法进行测定,配合同步激光扫描读序,测定反应、灌胶、进样、电泳、扫描检测、数据分析全部实现了计算机程序控制的自动化,加快了检测速度,大大提高了测定的精确性。

第2题:

简述反义寡核苷酸技术原理及其调节基因表达的主要机理。


正确答案: 反义寡核苷酸(antisense oligonucleotide,ASON)技术根据碱基互补结合原理,人工或生物合成与目的DNA或RNA互补的寡核苷酸,将其导入细胞,通过其与胞内目的DAN或RNA特异结合,抑制甚至阻断目的基因转录和/或翻译,达到人工调控基因表达的目的。
A.SON主要通过以下几种机理调节基因表达:
(1)形成三螺旋DNA(triplex DNA)或D环(D-loop)结构;
(2)与细胞内目的mRNA互补结合,形成DNA-RNA异源杂交体,激活核糖核酸酶H(RNase H)特异性降解mRNA;
(3)与核内不均一RNA(hnRNA)互补结合,破坏正常剪接形成mRNA的过程;
(4)与核糖体rRNA的mRNA结合位点互补结合,阻止mRNA的结合和翻译启动;
(5)ASON与mRNA互补结合,破坏其进入正确翻译部位的途径。

第3题:

简述常用的固体分散物制备方法。


参考答案:固体分散体的制备常用的方法有熔融法、溶剂法、溶剂-熔融法、溶剂喷雾冷冻干燥法、研磨法等。

第4题:

简述常用制备纯水的方法?


正确答案: (1)蒸馏法:利用杂质不和水的蒸气一同蒸发而达到水与杂质分离的效果。
(2)离子交换法:利用离子交换树脂中可游离交换的离子与水中同性离子间的离子交换作用,将水中各种离子除去或减少到一定程度。
(3)电渗析法;根据含有电解质的水具有导电性,在电场的作用下,阴阳离子的正负极运动。阴阳被阴阳离子膜吸附,从而达到去除水中阴阳离子的目的。

第5题:

简述基因诊断的常用技术方法和原理。


正确答案:所谓基因诊断,就是以DNA或RNA为诊断材料,通过检查基因的存在、缺失或表达异常,对人体的状态或疾病作出诊断的方法和过程。
基因诊断通常分为对基因突变的诊断、多态性分析和基因表达异常的诊断。常用技术有:1.核酸分子杂交(具有互补序列的两条核酸单链在一定条件下按碱基互补配对原则形成双链的过程。其基本原理是:具有互补序列的两条单链核酸分子在一定条件下(适当温度、离子强度等),按碱基互补配对原则,重新形成双链。)
①Southern印迹法;②Northern印迹法;③斑点杂交;④原位杂交
2.聚合酶链式反应(在模板、引物、4种dNTP和耐热DNA聚合酶存在的条件下,利用DNA半保留复制和其在不同温度下变性复性的特性,人为控制温度——高温变性,低温复性,室温延伸,循环多次后,特异性扩增位于两段已知序列之间的DNA区段)
3.单链构象多态性检测(DNA经变性形成单链后,在中性条件下单链DNA会因其分子内碱基之间的相互作用,形成一定的分子构象,相同长度的单链DNA,如果碱基序列不同,形成的构象就不同)
4.限制酶酶谱分析(基因突变可能导致基因上某一限制酶识别位点的丢失或相对位置发生改变,以此酶消化待测DNA和野生型对照DNA,通过比较二者的酶切片段的长度,数量上的差异可判断待测DNA的突变情况)
5.DNA序列测定
6.DNA芯片技术 它们共同的原理为是检测DNA或RNA的结构变化与否,量的多少及表达功能是否正常,以确定被检查者是否存在基因水平的异常变化,以此作为疾病确证的依据
互补链,选中间有三个氢键连接的碱基组合,寄生生物与宿主之间的关系,关于某种遗传病的两道逻辑推理题。还有两题忘了。概念题有四个,答案依次为合成代谢、叶绿素、光合作用第三阶段的电子载体(自己去找)、三羧酸循环。实验设计题一为:关于21三体综合症(唐氏综合症)的早期检查的一个设计(与游离的胎儿DNA在母体血液中有关);题二为NaOH引起某实验失败的验证的设计;题三为甲基化去甲基化T%含量与构建文库是片段大小成反比的这种实验现象的解释;题四说说基因组学与本学科的展望。

第6题:

什么是基因诊断?基因诊断中常用的方法有哪些?试简述其中一种方法的原理。


正确答案: 基因诊断是指用分子生物学的技术对引起疾病的原因——遗传基因、致病微生物和寄生虫,以及某些恶性肿瘤在基因水平上进行病原学和细胞遗传基因的检测和分析。基因诊断中常用的方法有核酸分子杂交、PCR、DNA芯片技术、限制酶酶谱分析和DNA序列测定等。
核酸分子杂交是基因诊断的最基本的方法之一。它的基本原理是:互补的核酸单链能够在一定条件下结合成双链,即能够进行杂交。它不仅能在DNA和DNA之间进行,也能在DNA和RNA之间进行。因此,当用一段已知基因的核酸序列作探针,与变性后的单链基因组DNA接触时,如果两者的碱基完全配对,它们即互补地结合成双链,从而表明被测基因组DNA中含有已知的基因序列。

第7题:

简述基因表达系列分析的原理及其基本过程。


正确答案:基因表达系列分析(serial analysis of gene expression,SAGE)以逆转录产物cDNA上特定区域的9-11bp特异寡核苷酸序列作为标签(tag)来代表各转录物;用连接酶随机串联将多个标签(20-60个)并克隆到载体中,建立SAGE文库;通过对标签的序列分析,获得基因转录的分布以及表达丰度,从而充分了解基因转录组的全貌。SAGE的基础是能特异性代表转录物并含有足够信息的标签。

第8题:

简述获得目的基因常用的几种方法。


参考答案:(1)直接从染色体DNA中分离:仅适用于原核生物、叶绿体和线粒体基因的分离,较少采用。
(2)人工合成:根据已知多肽链的氨基酸顺序,利用遗传密码表推定其核苷酸顺序再进行人工合成。适应于编码小分子多肽的基因。
(3)从mRNA合成cDNA:采用一定的方法钓取特定基因的mRNA,再通过逆转录酶催化合成其互补DNA(cDNA),除去RNA链后,再用DNA聚合酶合成其互补DNA链,从而得到双链DNA。这一方法通常可得到可表达的完整基因。
(4)利用PCR合成:如已知目的基因两端的序列,则可采用聚合酶链反应(polymerasechain reaction,PCR)技术,在体外合成目的基因。
(5)从基因文库中筛选:首先建立基因组或cDNA文库,利用探针从文库中筛选目的克隆。

第9题:

简述制备药剂常用的干燥方法。


正确答案: ①常压干燥(包括接触干燥和空气干燥)。
②减压干燥(亦称真空干燥)。
③喷雾干燥。
④沸腾干燥(又称流化床干燥)。
⑤红外线干燥。
⑥冷冻干燥。
⑦微波干燥。

第10题:

简述块体纳米材料的制备方法原理


正确答案: 外压力合成法:
(1)惰性气体凝聚原位加压成形法
(2)高能机械研磨法  
(3)电解沉积法   
相变界面成形法:
非晶晶化法  
大塑性变形法(粉末冶金法,高温、高压法) 
电解沉积法原理:电解沉积法是指在溶液中带正电的金属离子,吸附到带负电的纳米颗粒表面,然后在电动力的作用下移至阴极,金属离子还原成原子,并与所俘获的纳米颗粒一起占据阴极金属或合金表面的位置,而形成涂层,逐渐形成薄膜纳米材料。 
非晶晶化法原理:非晶晶化法是通过控制非晶态固体的晶化动力,来获得块体纳米材料的方法,它包括非晶态固体的获得和晶化两个过程。 
大塑性变形法原理:它是材料在准静态压力作用下自身发生严重塑性变形,从而将材料的晶粒尺寸细化到亚微米级或纳米数量级。 
粉末冶金法原理:粉末冶金法是把纳米粉压实成实体,然后放到热压炉中烧结。 
高温、高压法原理:高温、高压法是将真空电弧炉熔炼的样品置入高压腔体内,加压至数GPa后升温,通过高压抑制原子的长程扩散及晶体的生长速率,从而实现晶粒的纳米化 ,然后再从高温下固相淬火以保持高温、高压组织。