第1题:
计算题:
假设在完全竞争行业中有许多相同的厂商,代表厂商LAC曲线的最低点的值为6元,产量为500单位;当最优工厂规模为每阶段生产550单位的产品时,各厂商的SAC为7元,还知市场需求函数与供给函数分别是:Qd=8000-5000P,QS=35000+2500P.
(1)求市场均衡价格,并判断该行业是长期还是在短期处于均衡?为什么?
(2)在长期均衡时,该行业有多少家厂商?
(3)如果市场需求函数发生变动,变为Qd1=95000-5000P,试求行业和厂商的新的短期的均衡价格及产量,厂商在新的均衡点上,盈亏状况如何?
第2题:
在完全竞争条件下,超额利润存在将导致()。
A、单个厂商的产量增加
B、单个厂商的产量减少
C、单个厂商的产量不变
D、行业的产量增加
第3题:
计算题:
已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3-2Q2+15Q+10。试求:
(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;
(2)当市场上价格下降为多少时,厂商必须停产;
(3)厂商的短期供给函数
(1)根据MC=MR=P
MC=dSTC/dQ=0.3Q2-4Q+15=55=P
解得Q=20
利润=TR-STC=55*20-(0.1*203-2*202+15*20+10)=790
(2)停业点为AVC的最低点
AVC=TVC/Q=0.1Q2-2Q+15
当Q=10时AVC最小且AVC=5所以P=5时厂商必须停产
(3)短期供给函数即SMC函数且大于最低AVC对应产量以上的区间
SMC=dSTC/dQ=0.3Q2-4Q+15
所以短期供函数为0.3Q2-4Q+15(Q≥10)
第4题:
第5题:
假定在某一产量水平上,某完全竞争厂商的平均成本达到了最小值,这意味着( )。
A.厂商获得了最小利润
B.厂商获得了最大利润
C.边际成本等于平均成本
D.厂商的超额利润为零
[分析]
平均成本AC实际上是总成本STC曲线上各点与原点的连线,而边际成本SMC是总成本STC曲线上各点斜率,由图2-3我们不难理解当平均成本达到最小值(图中A点)时,该点处的边际成本等于平均成本。因此,本题的正确选项为C。
另外还须注意的是,根据经济学的市场理论,仅凭平均成本达到了最小值的条件,不能判断厂商的利润情况,要视成本曲线的状态而定。
第6题:
假设在完全竞争行业中有许多相同的厂商,代表性厂商LAC曲线的最低点的值为6美元,产量为500单位;当工厂产量为550单位的产品时,各厂商的SAC为7美元;还知市场需求函数与供给函数分别是:QD=80000-5000P、QS=35000+2500P(1)求市场均衡价格,并判断该行业是长期还是在短期处于均衡?为什么?(2)在长期均衡时,该行业有多少家厂商?(3)如果市场需求函数发生变动,变为Q′d=95000-5000P,试求行业和厂商的新的短期的均衡价格及产量,厂商在新的均衡点上,盈亏状况如何?
(1)已知市场需求函数与供给函数分别为:QD=80000-5000P和QS=35000-2500P,市场均衡时QD=QS即80000-5000P=35000-2500P,所以市场均衡价格P=6(美元),这与代表性厂商LAC曲线最低点的值(6美元)相等。故该行业处于长期均衡状态。
(2)长期均衡价格P=6美元时,则长期均衡产量QS=QD=80000-5000×6=50000(单位)而长期均衡时每家厂商的产量为500单位,故该行业厂商人数为n=50000/500=100,即该行业有100有厂商。
(3)新的需求函数为Q′d=95000-5000P,但供给函数仍为QS=35000+2500P。新的市场均衡时Q′D=QS,即95000-5000P=35000+2500P,因而新的市场均衡价格P=8美元(也即行业短期均衡价格),行业短期均衡产量为:Q′d=QS=35000+2500×8=55000。在短期,厂商数不会变动,故仍是100家,因此,在新的均衡中,厂商产量Q/N=55000/100=550。从题中假设知道,当产量为550单位时,厂商的SAC为7美元。可见,在短期均衡中价格大于平均成本,厂商有盈利,利润为π=(P-SAC.Q=(8-7)×550=550(美元)
第7题:
在一个完全竞争市场上,超额利润的存在将导致()
A、单个厂商的产量增加
B、单个厂商的产量减少
C、单个厂商的产量不变
D、行业的产量增加
E、行业的产量减少
第8题:
计算题:
已知某完全竞争的成本不变行业中的单个厂商的长期总成本函数LTC=Q3-12Q2+40Q。试求:
(1)当市场商品价格为P=100时,厂商实现MR=LMC时的产量,平均成本和利润;
(2)该行业长期均衡时的价格和单个厂商的产量;
(3)当市场的需求函数为Q=660-15P时,行业长期均衡时的厂商数量。
(1)P=MR=LMC=dLTC/dQ=3Q2-24Q+40=100
Q=10
LAC=LTC/Q=Q2-12Q+40
=100-120+40=20
利润=TR-TC=PQ-(Q3-12Q2+40Q)=800
(2)长期均衡的条件为LAC=LMC=P即位于LAC的最低点
LAC=LTC/Q=Q2-12Q+40
最低点时Q=6LAC最小为4
即当价格为4时,行业实现长期均衡,其产量为6
(3)行业的长期供给函数为P=4需求函数为Q=660-15P当供给和需求等时行业实现均衡产量为Q=660-15*4=600每一个厂商的产量为6所以厂商数量为100。
第9题:
长期平均成本LAC曲线表示()
A.厂商在长期内在每一产量水平上实现的最大的平均成本
B.厂商在长期内增加一单位产量所引起的最低总成本的增量
C.厂商在长期内增加一单位产量所引起的最低平均成本的增量
D.厂商在长期内在每一产量水平上可以实现的最小的平均成本
第10题: