理学

问答题设A为n阶非奇异矩阵且有分解式A=LU,其中L为单位下三角阵,U为上三角阵,求证A的所有顺序主子式均不为零。

题目
问答题
设A为n阶非奇异矩阵且有分解式A=LU,其中L为单位下三角阵,U为上三角阵,求证A的所有顺序主子式均不为零。
参考答案和解析
正确答案: 因为A非奇异,U的对角元uii不为零,又LU分解等价于高斯消去法,aii(i)=uii≠0由引理可知,矩阵A的顺序主子式均不为零。
解析: 暂无解析
如果没有搜索结果,请直接 联系老师 获取答案。
相似问题和答案

第1题:

若把A分解成一个下三角阵L和一个单位上三角阵U的乘积,称为克洛特(Crout)分解。()


参考答案:正确

第2题:

设A为n阶实对称矩阵,下列结论不正确的是().

A.矩阵A与单位矩阵E合同
B.矩阵A的特征值都是实数
C.存在可逆矩阵P,使P^-1AP为对角阵
D.存在正交阵Q,使Q^TAQ为对角阵

答案:A
解析:
根据实对称矩阵的性质,显然(B)、(C)、(D)都是正确的,但实对称矩阵不一定是正定矩阵,所以A不一定与单位矩阵合同,选(A).

第3题:

n阶对称矩阵A正定的充分必要条件是()。

A、|A|0

B、存在n阶方阵C使A=CTC

C、负惯性指标为零

D、各阶顺序主子式均为正数


参考答案:D

第4题:

设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵.其中A*是矩阵A的伴随矩阵,E是n阶单位矩阵. (1)计算并化简PQ; (2)证明:矩阵Q可逆的充分必要条件是.


答案:
解析:

第5题:

设A为n阶矩阵,则A以零为其特征值是A为奇异矩阵(即 A =0)的:
A.充分非必要条件
B.必要非充分条件
C.既非充分也非必要条件
D.充分必要条件


答案:D
解析:
提示:可通过下面证明说明。充分性:若矩阵A有特征值0→矩阵A奇异(即 A =0),若λ=0为矩阵A的特征值,则存在非零向量a,使Aa=0a,Aa=0,即齐次线性方程组Ax =0有非零解,故 A =0,故矩阵A为奇异矩阵。
必要性:若矩阵A是奇异矩阵,即 A =0→λ=0是矩阵A的特征值,已知A是奇异矩阵, A =0,取λ=0,有 A-λE = A-0E= A =0,λ=0,满足特征方程 A-λE =0,故λ=0 是矩阵A的特征值。

第6题:

将非奇异阵A分解成一个下三角阵L和一个上三角阵U的乘积:A=LU称为对矩阵A的三角分解。()


参考答案:正确

第7题:

下列结论中正确的是(  )。

A、 矩阵A的行秩与列秩可以不等
B、 秩为r的矩阵中,所有r阶子式均不为零
C、 若n阶方阵A的秩小于n,则该矩阵A的行列式必等于零
D、 秩为r的矩阵中,不存在等于零的r-1阶子式

答案:C
解析:
A项,矩阵A的行秩与列秩一定相等。B项,由矩阵秩的定义可知,若矩阵A(m×n)中至少有一个r阶子式不等于零,且r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。即秩为r的矩阵中,至少有一个r阶子式不等于零,不必满足所有r阶子式均不为零。C项,矩阵A的行列式不等于零意味着矩阵A不满秩,n阶矩阵的秩为n时,所对应的行列式的值大于零;当n阶矩阵的秩<n时,所对应的行列式的值等于零。D项,秩为r的矩阵中,有可能存在等于零的r-1阶子式,如秩为2的矩阵



中存在等于0的1阶子式。

第8题:

设A为m*n矩阵,则有()。

A、若mn,则有ax=b无穷多解

B、若mn,则有ax=0非零解,且基础解系含有n-m个线性无关解向量;

C、若A有n阶子式不为零,则Ax=b有唯一解;

D、若A有n阶子式不为零,则Ax=0仅有零解。


参考答案:D

第9题:

设A是nxm矩阵,B是mxn矩阵,E是n阶单位阵,若AB=E,证明B的列向量组线性无关。


答案:
解析:

第10题:

设A、B、C为同阶矩阵,且C为非奇异矩阵,满足,求证:


答案:
解析:

更多相关问题