军队文职人员招聘

设f(x)=dt,g(x)=x3+x4,当x→0时,f(x)是g(x)的().A.等价无穷小 B.同阶但非等价无穷小 C.高阶无穷小 D.低阶无穷小

题目
设f(x)=dt,g(x)=x3+x4,当x→0时,f(x)是g(x)的().


A.等价无穷小
B.同阶但非等价无穷小
C.高阶无穷小
D.低阶无穷小

如果没有搜索结果,请直接 联系老师 获取答案。
如果没有搜索结果,请直接 联系老师 获取答案。
相似问题和答案

第1题:

设f(x),g(x),h(x)均为奇函数,则()中所给定的函数是偶函数。

A、f(x)g(x)h(x)

B、[f(x)+g(x)]h(x)

C、f(x)+g(x)

D、f(x)+g(x)+h(x)


参考答案:B

第2题:

设函数f(x)为奇函数,g(x)为偶函数,则复合函数()是奇函数。

A.f(f(x))

B.g(f(x))

C.f(g(x))

D.g(g(x))


正确答案:A

第3题:

设函数f(x)=lnx,g(x)=e2x+1,则f[g(x)]=______。


正确答案:
2x+1

第4题:

设f(x)=du,g(x)=(1-cost)dt,则当x→0时,f(x)是g(x)的()

A.低阶无穷小
B.高阶无穷小
C.等价无穷小
D.同阶但非等价的无穷小

答案:A
解析:

第5题:

设f(x),g(x)ϵP[x J. 若f(x)lg(x),g(x)lf(x),则 f(x)与g(x)的关系是( ).


参考答案:A

第6题:

设f (x)=x2,g(x)=ex,则f [g(x)]=_________.


正确答案:
e2x

第7题:

设f(0)=g(0),且当x30时,f'(x)>g'(x),则当x>0时有()。

A.f(x)

B.f(x)>g(x)

C.f(x)=g(x)

D.以上都不对


正确答案:B

第8题:

设f(x)=3x,g(x)=x2,则函数g[f(x)]-f[g(x)]=_______________.


正确答案:

第9题:

设f(x)为偶函数,g(x)为奇函数,则下列函数中为奇函数的是(  )。

A. f[g(x)]
B. f[f(x)]
C. g[f(x)]
D. g[g(x)]

答案:D
解析:
D项,令T(x)=g[g(x)]。因为T(-x)=g[g(-x)]=g[-g(x)]=-g[g(x)],所以T(-x)=-T(x),所以g[g(x)]为奇函数。

第10题:

设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。

A. [f(x)/g(x)]>[f(a)/g(b)]
B. [f(x)/g(x)]>[f(b)/g(b)]
C. f(x)g(x)>f(a)g(a)
D. f(x)g(x)>f(b)g(b)

答案:C
解析:
因为[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)>0,所以函数f(x)g(x)在[a,b]上单调递增。所以,当x∈(a,b)时,f(a)g(a)<f(x)g(x)<f(b)g(b)。

更多相关问题