研究生入学

设A是m×n阶矩阵,若A^TA=O,证明:A=0.

题目
设A是m×n阶矩阵,若A^TA=O,证明:A=0.

参考答案和解析
答案:
解析:
【证明】因为r(A)=r(A^TA),而A^TA=O,所以r(A)=0,于是A=O.
如果没有搜索结果,请直接 联系老师 获取答案。
相似问题和答案

第1题:

设A,B为n阶矩阵.
  (1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.


答案:
解析:

第2题:

设n阶矩阵A满足(aE-A)(bE-A)=O且a≠6.证明:A可对角化.


答案:
解析:
【证明】由(aE-A)(bE-A)=O,得|aE-A|·|bE-A|=0,则|aE-A|=0或者
|bE-A|=0.又由(aE-A)(bE-A)=O,得r(aE-A)+r(bE-A)≤n.
同时r(aE-A)+r(bE-A)≥r[(aE-A)-(bE-A)]=r[(a-b)E]=n,
所以r(aE-A)+r(bE-A)=n.
(1)若|aE-A|≠0,则r(aE-A=n,所以r(bE-A)=0,故A=bE.
(2)若|bE-A|≠0,则r(bE-A)=n,所以r(aE-A)=0,故A=aE.
(3)若|aE-A|=0且|bE-A|=0,则a,b都是矩阵A的特征值.
方程组(aE-A)X=0的基础解系含有n-r(aE-A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n-r(aE-A)个;
方程组(bE-A)X=0的基础解系含有n-r(bE-A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n-r(bE-A)个.
因为n-r(aE-A)+n-r(bE-A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.

第3题:

设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().

A.r>m
B.r=m
C.rD.r≥m

答案:C
解析:
显然AB为m阶矩阵,r(A)≤n,r(B)≤n,而r(AB)≤min{r(A),r(B)}≤n小于m,所以选(C).

第4题:

设A是m×s阶矩阵,.B是s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组.


答案:
解析:

第5题:

设A是n阶正定矩阵,证明:|E+A|>1.


答案:
解析:

第6题:

设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且


答案:
解析:

第7题:

设A是nxm矩阵,B是mxn矩阵,E是n阶单位阵,若AB=E,证明B的列向量组线性无关。


答案:
解析:

第8题:

设A是m×s阶矩阵,B为s×n阶矩阵,则方程组BX=O与ABX=O同解的充分条件是().

A.r(A)=s
B.r(A)=m
C.r(B)=s
D.r(B)=n

答案:A
解析:
设r(A)=s,显然方程组BX=0的解一定为方程组ABX=0的解,反之,若ABX=0,因为r(A)=s,所以方程组AY=0只有零解,故BX=0,即方程组BX=0与方程组ABX=0同解,选(A).

第9题:

设A,B都是N阶对称矩阵,证明AB是对称矩阵的充分必要条件是.AB=BA


答案:
解析:

第10题:

设A为n阶非零矩阵,且存在自然数k,使得A^k=O.证明:A不可以对角化.


答案:
解析: