数学

单选题设α1,α2,α3,α4是4维非零列向量组,A=(α1,α2,α3,α4),A*是A的伴随矩阵,已知方程组AX=0的基础解系为k(1,0,2,0)T,则方程组A*X=0的基础解系为(  ).A α1,α2,α3B α1+α2,α2+α3,3α3C α2,α3,α4D α1+α2,α2+α3,α3+α4,α4+α1

题目
单选题
设α1,α2,α3,α4是4维非零列向量组,A=(α1,α2,α3,α4),A*是A的伴随矩阵,已知方程组AX=0的基础解系为k(1,0,2,0)T,则方程组A*X=0的基础解系为(  ).
A

α1,α2,α3

B

α12,α23,3α3

C

α2,α3,α4

D

α12,α23,α34,α41

如果没有搜索结果,请直接 联系老师 获取答案。
如果没有搜索结果,请直接 联系老师 获取答案。
相似问题和答案

第1题:

设A是4×5矩阵,ξ1,ξ2是齐次线性方程组Ax=0的基础解系,则下列结论正确的是( ).

A.ξ1-ξ2,ξ1+2ξ2也是Ax=0的基础解系
B.k1ξ1+k1ξ2是Ax=0的通解
C.k1ξ1+ξ2是Ax=0的通解
D.ξ1-ξ2,ξ2-ξ1也是Ax=0的基础解系

答案:A
解析:
由题设知道,n=5,s=n-r=2,r=3.B不正确,因为k1ξ1+k1ξ2=k1(ξ2+ξ1)只含有一个不定常数,同样理由说明C也不正确.D不正确,因为(ξ1-ξ2)+(ξ1+ξ2)=0,这表明ξ1-ξ2与ξ2-ξ1线性相关.A正确,因为ξ1-ξ2与ξ1+2ξ2都是Ax=0的解,且它 们线性无关,故选A.

第2题:

设三阶矩阵A的特征值为λ1=1,λ2=0,λ3=1,则下列结论不正确的是().

A.矩阵A不可逆
B.矩阵A的迹为零
C.特征值-1,1对应的特征向量正交
D.方程组AX=0的基础解系含有一个线性无关的解向量

答案:C
解析:
由λ1=-1,λ2=0,λ3=1得|A|=0,则r(A)小于3,即A不可逆,(A)正确;又λ1+λ2+λ3=tr(A)=0,所以(B)正确;因为A的三个特征值都为单值,所以A的非零特征值的个数与矩阵A的秩相等,即r(A)=2,从而AX=0的基础解系仅含有一个线性无关的解向量,(D)是正确的;(C)不对,因为只有实对称矩阵的不同特征值对应的特征向量正交,一般矩阵不一定有此性质,所以选(C).

第3题:

设A是4×6矩阵,r(A)=2,则齐次线性方程组Ax=0的基础解系中所含向量的个数是( )

A.1 B.2

C.3 D.4


正确答案:D

第4题:

设A=(α1,α2,α3)为3阶矩阵.若α1,α2线性无关,且α3=-α1+2α1,则线性方程组Ax=0的通解为________.


答案:
解析:

1、k(1,-2,1)^T,k为任意常数

第5题:

已知4元非齐次线性方程组Ax=b的系数矩阵的秩等于3,且η1,η2,η3是3个不同的解向量,则通解是( ).

A.x=k1(η-η2)+η3
B.x=k1η1+k2η2+η3
C.x=k1η1+k2η2+k3η3
D.x=k1(η+η2)+η3

答案:A
解析:
由n=4,r=3得s=1。ηη2是 Ax=0的基础解系

第6题:

设有方程组AX=O与BX=0,其中A,B都是m×N阶矩阵,下列四个命题:
  (1)若AX=O的解都是BX=O的解,则r(A)≥r(B)
  (2)若r(A)≥r(B),则AX=0的解都是BX=0的解
  (3)若AX=0与BX=0同解,则r(A)-r(B)
  (4)若r(A)=r(B),则AX=0与BX=0同解
  以上命题正确的是().

A.(1)(2)
B.(1)(3)
C.(2)(4)
D.(3)(4)

答案:B
解析:
若方程组AX=0的解都是方程组BX=0的解,则n-r(A)≤n-r(B),从而  r(A)≥r(B),(1)为正确的命题;显然(2)不正确;因为同解方程组系数矩阵的秩相等,但
  反之不对,所以(3)是正确的,(4)是错误的,选(B).

第7题:

设n阶矩阵A的伴随矩阵A^*≠0,若ζ1,ζ2,ζ3,ζ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系

A.不存在.
B.仅含一个非零解向量.
C.含有两个线性无关的解向量.
D.含有三个线性无关的解向量.

答案:B
解析:

第8题:

对于有5个变量的齐次线性方程组AX=0,系数矩阵的秩r(A)=3,则其基础解析中向量个数为()。

A.2

B.5

C.3

D.1


正确答案:A

第9题:

设3阶实对称矩阵A的各行元素之和都为3,向量都是齐次线性方程组AX=0的解.① 求A的特征值和特征向量.② 求作正交矩阵Q和对角矩阵


答案:
解析:

第10题:

设3阶矩阵A=[α1,α2,α3]有3个不同的特征值,且a3=a1+2a2.
  (Ⅰ)证明r(A)=2;
  (Ⅱ)若β=α1,α2,α3,求方程组Ax=β的通解.


答案:
解析:

更多相关问题