经济学基础

问答题某竞争行业所有厂商的规模都相等,都是在产量达到500单位时达到长期平均成本的最低点4元,当用最优的企业规模生产600单位产量时,每一个企业的短期平均成本为4.5元,市场需求函数为Q=70000-5000P,供给函数为Q=40000+2500P,求解下列问题:  (1)市场均衡价格是多少?该行业处于短期均衡还是长期均衡?  (2)当处于长期均衡时,该行业有多少厂商?  (3)如果市场需求变化为Q=100000-5000P,求行业与厂商新的短期均衡价格与产量,在新的均衡点,厂商盈利还是亏损?

题目
问答题
某竞争行业所有厂商的规模都相等,都是在产量达到500单位时达到长期平均成本的最低点4元,当用最优的企业规模生产600单位产量时,每一个企业的短期平均成本为4.5元,市场需求函数为Q=70000-5000P,供给函数为Q=40000+2500P,求解下列问题:  (1)市场均衡价格是多少?该行业处于短期均衡还是长期均衡?  (2)当处于长期均衡时,该行业有多少厂商?  (3)如果市场需求变化为Q=100000-5000P,求行业与厂商新的短期均衡价格与产量,在新的均衡点,厂商盈利还是亏损?
如果没有搜索结果,请直接 联系老师 获取答案。
如果没有搜索结果,请直接 联系老师 获取答案。
相似问题和答案

第1题:

某成本不变的完全竞争行业的代表性厂商的长期总成本函数为LTC=Q3-60Q2+1500Q,产品价格P=975美元,市场需求函数为P=9600-2Q,

试求:

(1)利润极大时的产量、平均成本和利润。

(2)该行业长期均衡时的价格和厂商的产量。

(3)用图形表示上述(1)和(2)。

(4)若市场需求曲线是P=9600-2Q,试问长期均衡中留存于该行业的厂商人数是多少?


参考答案:

1)LMC=dLTC/dQ=3Q2-120Q+1500
当LMC=P=MR时,利润极大。
故,3Q2-120Q+1500=975,得Q1=5(舍);Q2=35
LAC=LTC/Q=Q2-60Q+1500=352+60×35+1500=625
π=TR-TC=P·Q-AC·Q=975×35-625×35=12250
(2)行业长期均衡时,LAC最小,当LAC′=0,且LAC〞>0时,有最小值。
即,(Q2-60Q+1500)′=2Q-60=0,得,Q=30,LAC〞=2>0
当Q=30时,P=LACmin=302-60×30+1500=600
(3)如图所示:


(4)若市场需求曲线是P=9600-2Q,又知长期均衡价格P=600,
       业产量Q=(9600-P)/2=(9600-600)/2=4500
厂商人数N=行业产量/厂商产量=4500/30=150家
 


第2题:

已知某完全竞争的成本不变行业中的单个厂商的长期总成本函数LTC=Q3-12Q2+40Q。试求:(1)当市场商品价格是P=100,厂商实现MR=LMC时的产量,平均成本和利润;(2)该行业长期均衡时的价格和单个厂商的产量;(3)市场的需求函数为Q=660-15P时,行业长期均衡时的厂商数量。


参考答案:

(1)LTC′=LMC=3Q2-24Q+40=MR=P=100
此时,3Q2-24Q+60=0,∴Q=10或Q=-2(舍去);LAC=Q2-12Q+40=20;利润=(P-LAC.Q=800
(2)LAC最低点=PLAC′=2Q-12=0,∴Q=6LAC最低点=4
即该行业长期均衡时的价格为4,单个厂商的产量为6
(3)成本不变行业长期均衡时价格是市场均衡价格,所以市场需求为Q=660-15×4=600,则厂商数量为600/6=100


第3题:

计算题:

已知某完全竞争的成本不变行业中的单个厂商的长期总成本函数LTC=Q3-12Q2+40Q。试求:

(1)当市场商品价格为P=100时,厂商实现MR=LMC时的产量,平均成本和利润;

(2)该行业长期均衡时的价格和单个厂商的产量;

(3)当市场的需求函数为Q=660-15P时,行业长期均衡时的厂商数量。


参考答案:

(1)P=MR=LMC=dLTC/dQ=3Q2-24Q+40=100
Q=10
LAC=LTC/Q=Q2-12Q+40
=100-120+40=20
利润=TR-TC=PQ-(Q3-12Q2+40Q)=800
(2)长期均衡的条件为LAC=LMC=P即位于LAC的最低点
LAC=LTC/Q=Q2-12Q+40
最低点时Q=6LAC最小为4
即当价格为4时,行业实现长期均衡,其产量为6
(3)行业的长期供给函数为P=4需求函数为Q=660-15P当供给和需求等时行业实现均衡产量为Q=660-15*4=600每一个厂商的产量为6所以厂商数量为100。


第4题:

已知某完全竞争的成本不变行业中的单个厂商的长期总成本函数为LTC= Q3 - 12Q2+40Q。试求: (1)当市场产品价格为P=100时,厂商实现MR= LMC时的产量、平均成本和利润。 (2)该行业长期均衡时的价格和单个厂商的产量。 (3)当市场的需求函数为Q=660 -15P时,行业长期均衡时的厂商数量。


答案:
解析:

故Q=6是长期平均成本最小化的解。 以Q=6代入LAC( Q),得平均成本的最小值为LAC =62 -12 x6+40 =4。 由于完全竞争行业长期均衡时的价格等于厂商的最小的长期平均成本,所以,该行业长期均衡时的价格P=4,单个厂商的产量Q=6。 (3)由于完全竞争的成本不变行业的长期供给曲线是一条水平线,而且相应的市场长期均衡价格是固定的,它等于单个厂商的最低的长期平均成本,所以,本题的市场长期均衡价格固定为P=4。以P=4代入市场需求函数Q=660 -15P,便可以得到市场的长期均衡数量为Q=660 -15 x4= 600。 现已求得在市场实现长期均衡时,市场的均衡数量Q =600,单个厂商的均衡产量Q=6。于是,行业长期均衡时的厂商数量= 600÷6=100。

第5题:

假定某完全竞争行业有100个相同的厂商,单个厂商的短期总成本函数为.STC=Q2+6Q +20。 (l)求市场的短期供给函数。 (2)假定市场的需求函数为Qd=420 - 30P,求该市场的短期均衡价格和均衡产量。 (3)假定政府对每一单位商品征收1.6元的销售税,那么,该市场的短期均衡价格和均衡产量是多少?消费者和厂商各自负担多少税收?


答案:
解析:
(1)单个厂商的边际成本MC =2Q +6。 由短期均衡条件可知P= MC,即P=2Q +6, 即Q =0.5P-3。 故市场的短期供给函数为Qs=100Q= 50P - 300。 (2)联立供给函数与需求函数,可得P=9,Q=150。 (3)征税后,联立函数:

解得Pd=10,Q=120。 故市场短期均衡价格为10,均衡产量为120。 消费者承担1元税收,厂商承受0.6元税收。

第6题:

假设在完全竞争行业中有许多相同的厂商,代表性厂商LAC曲线的最低点的值为6美元,产量为500单位;当工厂产量为550单位的产品时,各厂商的SAC为7美元;还知市场需求函数与供给函数分别是:QD=80000-5000P、QS=35000+2500P(1)求市场均衡价格,并判断该行业是长期还是在短期处于均衡?为什么?(2)在长期均衡时,该行业有多少家厂商?(3)如果市场需求函数发生变动,变为Q′d=95000-5000P,试求行业和厂商的新的短期的均衡价格及产量,厂商在新的均衡点上,盈亏状况如何?


参考答案:

(1)已知市场需求函数与供给函数分别为:QD=80000-5000P和QS=35000-2500P,市场均衡时QD=QS即80000-5000P=35000-2500P,所以市场均衡价格P=6(美元),这与代表性厂商LAC曲线最低点的值(6美元)相等。故该行业处于长期均衡状态。
(2)长期均衡价格P=6美元时,则长期均衡产量QS=QD=80000-5000×6=50000(单位)而长期均衡时每家厂商的产量为500单位,故该行业厂商人数为n=50000/500=100,即该行业有100有厂商。
(3)新的需求函数为Q′d=95000-5000P,但供给函数仍为QS=35000+2500P。新的市场均衡时Q′D=QS,即95000-5000P=35000+2500P,因而新的市场均衡价格P=8美元(也即行业短期均衡价格),行业短期均衡产量为:Q′d=QS=35000+2500×8=55000。在短期,厂商数不会变动,故仍是100家,因此,在新的均衡中,厂商产量Q/N=55000/100=550。从题中假设知道,当产量为550单位时,厂商的SAC为7美元。可见,在短期均衡中价格大于平均成本,厂商有盈利,利润为π=(P-SAC.Q=(8-7)×550=550(美元)


第7题:

已知某个完全竞争行业中的单个厂商的短期成本函数是STC=0.1Q3—2Q2+15Q+10。求:

(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;

(2)当市场价格下降为多少时,厂商必须停产;

(3)厂商的短期供给函数。


答案:
  解:(1)已知STC=0.1Q3 - 2Q2+15Q+10,P=55
  完全竞争厂商的短期均衡的条件是:P=MR=SMC
  SMC=dSTC/dQ=0.3Q2 - 4Q+15
  当P=55,即55=0.3Q2 - 4Q+15
  解方程得Q=20
  即短期均衡产量为20。利润等于总收益减总成本,
  即л=TR-TC=P×Q – (0.1Q3– 2Q2+15Q+10)
  将P=55,Q=20代入求得:л=790
  即厂商的短期均衡产量和利润分别为20和790。
  (2)厂商必须停产的条件是:价格等于AVC的最小值。
  因为TC=VC+FC,FC=10,
  所以VC=0.1Q3 -2Q2+15Q
  AVC=VC/Q=0.1Q2 -2Q+15;对Q求导,令dAVC/dQ=0,可得:dAVC/dQ=0.2Q-2=0,求得Q=10, 即当Q=10,AVC取最小值;此时,AVC=10-20+15=5
  也就是说,当价格下降到5时,厂商必须停产。
  (3)厂商的短期供给函数用SMC曲线大于和等于停止营业点的部分来表示。相应的,厂商的短期供给函数应该就是SMC函数,即SMC=dSTC/dQ=0.3Q2 - 4Q+15,但要满足Q10即大于停止营止点的产量。

第8题:

计算题:

假设在完全竞争行业中有许多相同的厂商,代表厂商LAC曲线的最低点的值为6元,产量为500单位;当最优工厂规模为每阶段生产550单位的产品时,各厂商的SAC为7元,还知市场需求函数与供给函数分别是:Qd=8000-5000P,QS=35000+2500P.

(1)求市场均衡价格,并判断该行业是长期还是在短期处于均衡?为什么?

(2)在长期均衡时,该行业有多少家厂商?

(3)如果市场需求函数发生变动,变为Qd1=95000-5000P,试求行业和厂商的新的短期的均衡价格及产量,厂商在新的均衡点上,盈亏状况如何?


参考答案:(1)已知市场需求函数与供给函数分别为:QD=80000-5000P和=35000-2500P,市场均衡时即8000-5000P=35000+2500P,
所以市场均衡价格P=6(元),这与代表厂商LAC曲线最低点的植6(元)相等。故该行业处于长期均衡状态。
(2)长期均衡价格P=6(元)时,则长期均衡产量Qs=Qd=8000-50006=5000(单位)而长期均衡时每家厂商的产量为500单位,故该行业厂商人数为n=50000/500=100,即该行业有100家商家。
(3)新的需求函数为=95000-5000P,但供给函数仍为Qs=35000+2500P。新的市场均衡时=Qs,即95000-5000P=35000=2500P,
因而新的市场均衡价格P=8元(也即行业短期均衡价格),行业短期均衡产量为:=Qs=35000+25008=55000。
在短期,厂商数不会变动,故仍是100家,因此,在新的均衡中,厂商产量为Q/N=55000/100=550。
当产量为550单位时,厂商的SAC为7元。可见,在短期均衡中的价格大于平均成本,厂商有盈利,利润为=(P-SAC)Q=(8-7)550=550(元)

第9题:

完全竞争市场中厂商长期成本函数为c(q)= 1000 +1Oq2(g>o),q=0,c=O.市场需求函数为p =1200 - 2q。 (1)求厂商长期供给函数。 (2)长期均衡时行业中有多少厂商? (3)求长期均衡时的消费者剩余。


答案:
解析:

第10题:

已知某完全竞争行业中的单个厂商的短期成本函数为STC =0.1Q3- 2Q2+150 +10 . (1)求当市场上产品的价格为P=55时,厂商的短期均衡产量和利润。 (2)当市场价格下降为多少时,厂商必须停产? (3)求厂商的短期供给函数。


答案:
解析:

更多相关问题