研究生入学

设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.

题目
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.

如果没有搜索结果,请直接 联系老师 获取答案。
如果没有搜索结果,请直接 联系老师 获取答案。
相似问题和答案

第1题:

设n阶矩阵A与对角矩阵相似,则().

A.A的n个特征值都是单值
B.A是可逆矩阵
C.A存在n个线性无关的特征向量
D.A一定为n阶实对称矩阵

答案:C
解析:
矩阵A与对角阵相似的充分必要条件是其有n个线性无关的特征向量,A有n个单特征值只是其可对角化的充分而非必要条件,同样A是实对称阵也是其可对角化的充分而非必要条件,A可逆既非其可对角化的充分条件,也非其可对角化的必要条件,选(C).

第2题:

设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知a是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:
A. Pa B. P-1

A C. PTa D.(P-1)Ta

答案:B
解析:

第3题:

可对角化的矩阵是____。

A.实对称阵

B.有n个相异特征值的n阶阵

C.有n个线性无关的特征向量的n阶方阵


参考答案:ABC

第4题:

设3阶实对称矩阵A的各行元素之和都为3,向量都是齐次线性方程组AX=0的解.① 求A的特征值和特征向量.② 求作正交矩阵Q和对角矩阵


答案:
解析:

第5题:

设矩阵可相似对角化,求x


答案:
解析:

第6题:

设A为n阶实对称矩阵,下列结论不正确的是().

A.矩阵A与单位矩阵E合同
B.矩阵A的特征值都是实数
C.存在可逆矩阵P,使P^-1AP为对角阵
D.存在正交阵Q,使Q^TAQ为对角阵

答案:A
解析:
根据实对称矩阵的性质,显然(B)、(C)、(D)都是正确的,但实对称矩阵不一定是正定矩阵,所以A不一定与单位矩阵合同,选(A).

第7题:

设A是3阶实对称矩阵,P是3阶可逆矩阵,B=P-1AP,已知α是A的属于特征值λ的特征向量,则B的属于特征值λ的特征向量是:(A) Pα (B) P-1α (C) PTa (D) P(-1)Ta


答案:A
解析:
解:选A。
考察了实对称矩阵的特点,将选项分别代入检验可得到答案。

第8题:

设A为n阶方阵,则A可对角化的充分必要条件是( ).

A. A有n个不同特征值

B.A有n个不同特征向量

C.A有n个线性元关的特征向量

D.IAI≠0。


参考答案:C

第9题:

设n阶矩阵A满足(aE-A)(bE-A)=O且a≠6.证明:A可对角化.


答案:
解析:
【证明】由(aE-A)(bE-A)=O,得|aE-A|·|bE-A|=0,则|aE-A|=0或者
|bE-A|=0.又由(aE-A)(bE-A)=O,得r(aE-A)+r(bE-A)≤n.
同时r(aE-A)+r(bE-A)≥r[(aE-A)-(bE-A)]=r[(a-b)E]=n,
所以r(aE-A)+r(bE-A)=n.
(1)若|aE-A|≠0,则r(aE-A=n,所以r(bE-A)=0,故A=bE.
(2)若|bE-A|≠0,则r(bE-A)=n,所以r(aE-A)=0,故A=aE.
(3)若|aE-A|=0且|bE-A|=0,则a,b都是矩阵A的特征值.
方程组(aE-A)X=0的基础解系含有n-r(aE-A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n-r(aE-A)个;
方程组(bE-A)X=0的基础解系含有n-r(bE-A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n-r(bE-A)个.
因为n-r(aE-A)+n-r(bE-A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.

第10题:

已知3阶矩阵有一个二重特征值,求a,并讨论A可否对角化。


答案:
解析: